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ABSTRACT

primary interest vehicle designers and advanced mission
have in solar flares is the probability of occurrence of a

Obviously then, one must define exactly what is a
An envirommental model of a "typical' flare is con-

herein, and the probability of occurrence of this or a similar
considered. The next step is to then derive an "extreme' model

solar flare so that the effects of such a flare on occupants of a nomi-
nally shielded vehicle may be derived., Since this report is intended
to present only the envirommental model, no attempt has been made to

estimate the dose accrued for either type flare nor have any shielding
calculations been performed.
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PROBABILITIES OF SOLAR FLARE OCCURRENCE
SUMMARY

The primary interest vehicle designers and advanced mission
planners have in solar flares is the probability of occurrznce of a
damaging flare. Obviously then, one must define exactly what is a
damaging flare, An environmental model of a '"typical' flare is con-
structed herein, and the probability of occurrence of this or a similar
flare is considered. The next step is to then derive an '"extreme'" model
solar flare so that the effects of such a flare on occupants of a nomi-
nally shielded vehicle may be derived. Since this report is intended
to present only the environmental model, no attempt has been made to
estimate the dose accrued for either type flare nor have any shielding
calculations been performed.

I, INTRODUCTION

A description of the solar flare environment has been presented by
the author in an earlier paper [2], and will not be reviewed in detail
here. A few revisions to the "extreme'" model flare have been made which
will be discussed later. The probability of the occurrence of a solar
flare is based upon the binomial law. If p,; is the probability of occur-
rence of a solar flare per day and q; is the probability of a solar flare
not occurring per day, then

p1 +q1 =1
or
91 =1 - pa1.

For a mission lasting n days, the probability, P,, of the occurrence of
cne or more such flares is derived by

n
P, = 1 -1 -p0.



This was the method used to calculate the probabilities in this
report, The data used were basically those of Webber [1] for the period
1956-1961, No special calculations were performed to show that the flares
tend to "group'" in time as evidenced by the July 1959 series, nor was any
attempt made to include the time period of the dearth of flares during
sunspot minimum, The lack of solar flares at sunspot minimum is well
known, but the problem lies in specifying exactly how long this minimum
will last., The past sunspot minimum appears to indicate a safe period
(for lightly shielded vehicles) of about four years beginning in 1962
and extending through 1965, but to apply this safe period to the next
solar minimum would probably not be wise,

A reasonable assumption might be to designate a two-year period
centered on sunspot minimum as a safe time zone for lightly shielded
vehicles. Since missions to Mars and Venus are not expected to take
much over two years, sunspot minimum is the most favorable time period
from a solar flare viewpoint, Unfortunately, launch windows for these
missions do not necessarily correspond to favorable time periods for
solar flares. Whereas launch windows are predictable, solar cycles are

not.

In view of the severe flare model used and the time period con-
sidered, these results are probably conservative, but nevertheless, they
represent reasonable criteria for vehicle design and mission studies,

IT, DESIGN FLARE MODEL

A few minor revisions have been made from the model flare presented
in the earlier paper [2]. Where, previously, the flux of particles above
a certain energy was the highest recorded for individual flares, the flux
in this report includes the sums of the series of flares recorded in
July 1959, Thus, instead of a flux of 7.5 x 109 (cm™2®) with energies
above 10 Mev, the maximum particles above 10 Mev is now 1.5 x 10t (cm‘z).
In addition, since the February 1956 flare holds up out to very high
energies, the energy spectrum for particles over 100 Mev is fitted to
that flare spectrum., Using this spectrum, we find that there are still
about 1,3 x 10® (cm=2) particles whose energies are equal to or exceed
300 Mev., Since the spectrum is so hard, one should expect that these
particles will be exceedingly difficult to shield against, Figure 1
shows this extreme flare model.

Figure 2 shows the flux of particles (with energies greater than
30 Mev) per month throughout the period 1956-1961, One must keep in
mind that the particles from these flares were incident at the earth,
and were thus recorded. The dashed curve in Figure 2 is the mean monthly
solar flux recorded at the National Research Council in Ottawa, Canada.



Although during this period mean monthly solar flux values vary widely,
the form of the curve is easily discernible. Both the months of July
1959 and November 1960 indicate the occurrence of exceedingly large
flares. In July 1959 there were three exceptionally large flares, and
in November 1960 there were two very large flares. By comparison, the
February 1956 flare appears to be only one of three moderately large
flares, However, the energy spectrum for this flare is much harder or
flatter than any other large flare. As a result, this February 1956
flare has more particles with energies exceeding 100 Mev than any other
flare on record.

The design model flare is shown in Figure 3, This model was con-
structed by assuming an envelope which exceeded the flux-energy spectra
of all but thirteen flares recorded. Thirteen were chosen for several
reasons., First, the probability of occurrence of this type of flare is
not extremely steep over relatively long mission lengths. Second, shield-
ing for this flare spectrum will probably prove reasonable for most mis-
sions. Third, the high energy spectrum tends to be reasonably hard, thus
providing the conservatism necessary in specifying a solar flare model,
Figure 4 is a graph of the probability of occurrence of a flare equal to
or greater than this flux energy spectrum during an extramagnetospheric
mission lasting n days.

III, MISSION CONSIDERATIONS

When should the solar flare be considered in mission planning?
Al though vehicles in low earth orbits which have inclinations less than
about 55 degrees will probably never have to consider the solar flare as
a direct radiation hazard, there are effects caused by the solar flare
which will be of concern to even low earth orbiting vehicles. These
effects include the enhancement and extension of the Van Allen radiation
zones.

Lunar missions must certainly consider solar flare radiation. The
lunar surface is not protected by an extensive atmosphere which could
absorb the incoming particles nor is it protected by an appreciable
magnetic field which could deflect incoming particles. It is probable
that the lunar surface will be subjected to about the same atmosphere
enviromment as that found in interplanetary space. It is possible that
some measurable atmosphere exists, but this atmosphere would be extremely
tenuous. The same statement may be made about the magnetic field on the
moon,



The moon itself would offer some shielding at a given site depend-
ing on the sun-moon~site angle and the angle subtended by the lunar sur-

face itself,

Since interplanetary missions will be subjected to the direct radia-
tion of the solar flare, ways must be found to reduce the radiation dose
as much as possible. It has been suggested that a small but heavily
shielded area be included where personnel could remain during the occur-
rence of large solar flares. This might also serve as a sleeping area
for these astronauts. Another possibility is that interplanetary mis-
sions traveling at distances greater than 1 astronomical unit from the
sun might encounter a less severe flare environment, because of disper-
sion and increased loss of energy of the particles themselves. For
instance, since it is fairly certain that the solar constant varies as
1/R® due to dispersion, unless the particles are controlled decisively
by the solar magnetic field, it is to be expected that solar flares will
exhibit this same relationship.

It was mentioned earlier that vehicles in low earth orbit and at
low inclinations would not be subjected to the direct solar flare eaviron-
ment, Vehicles in polar or near polar orbits will, however, spend some
time outside the protection of the magnetic field, Near the magnetic
poles, the lines of forg; are approaching perpendicular to the earth's
surface; thus, the V¥ x B term in the force equation approaches zero and
the particles are allowed to flow in uninhibited by the magnetic field.
For this reason, manned vehicles in polar orbit should have either a
well defined abort capability or sufficient shielding to reduce the dose
to acceptable limits. The acceptable dose criteria here should also be
more strict since termination is possible for this type of mission.

The final type of mission which will require consideration of the
solar flare as a radiation hazard is the high altitude earth orbital
mission. The geomagnetic field boundary is determined by the energy
of the solar wind being balanced by the magnetic field energy. When a
solar flare occurs, the solar wind energy is enhanced and the geomagnetic
field boundary then is deflated. Another way of looking at the problem
is to consider the rigidity of the solar flare particles, Rigidity, P,
is given by

p = RS
ze

b

where

particles momentum,

=)
il

speed of light,

e}
I
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e charge on an electron, and

2z the atomic number of the particles.

The distance a particle can penetrate into the magnetic field is
directly proportional to the rigidity of the particles, The cutoff
rigidity, P., for particles is a function of the magnetic field itself,

Pe = 14,900 cos*\ in million volts,

where A is the geomagnetic latitude,.
P, = 14,900 (R/L)%,

where R is the geocentric radial distance to the dipole field coordinate,
L. Thus, for instance, a satellite at synchronous orbit on the sunward
side of the earth would be exposed to almost all of the higher energy
solar flare particles,

IV, PROBABILITY OF FLARE OCCURRENCE

For planning missions and for vehicle design, it is well to know
the probability of occurrence of a particular type of solar flare, Fig-
ures 5 and 6 provide this information for various single flare particle
fluxes., The probability of occurrence, p, of at least one flare with a
flux equal to or exceeding N is given in these two figures, There is no
relation between the probabilities and a particular flare spectrum, but
notice that Figure 5 is calculated for a flux of particles with energies
equal to or exceeding 30 Mev, whereas, Figure 6 is calculated for a flux
of particles with energies equal to or exceeding 100 Mev., From these
graphs, one may obtain reasonable figures for various mission lengths
versus probabilities of occurrence,
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